Teaching

Spring 2011, Spring 2012

3.063 Polymer Physics
The mechanical, optical, electrical, and transport properties of polymers and other types of "soft matter" are presented with respect to the underlying physics and physical chemistry of polymers and colloids in solution, and solid states. Topics include how enthalpy and entropy determine conformation, molecular dimensions and packing of polymer chains and colloids and supramolecular materials. Examination of the structure of glassy, crystalline, and rubbery elastic states of polymers; thermodynamics of solutions, blends, crystallization; liquid crystallinity, microphase separation, and self-assembled organic-inorganic nanocomposites. Case studies of relationships between structure and function in technologically important polymeric systems.
A. Alexander-Katz

Spring 2010

3.941J Statistical Mechanics of Polymers
Concepts of statistical mechanics and thermodynamics applied to macromolecules: polymer conformations in melts, solutions, and gels; Rotational Isomeric State theory, Markov processes and molecular simulation methods applied to polymers; incompatibility and segregation in incompressible and compressible systems; molecular theory of viscoelasticity; relation to scattering and experimental measurements.
G.C. Rutledge, A. Alexander-Katz

Fall 2009, Fall 2010

3.20 Materials at Equilibrium
Laws of thermodynamics: general formulation and applications to mechanical, electromagnetic and electrochemical systems, solutions, and phase diagrams. Computation of phase diagrams. Statistical thermodynamics and relation between microscopic and macroscopic properties, including ensembles, gases, crystal lattices, phase transitions. Applications to phase stability and properties of mixtures. Computational modeling. Interfaces.
G. Ceder, A. Alexander-Katz

Department of Materials Science and Engineering MIT